Thermodynamics $2^{\text {nd }}$ Semester, Chapter 4 -PART 2

Reciprocating Compressor Including Clearance Isothermal Efficiency \& Volumetric Efficiency

Dr. Mahmood Shaker
Department of Mechanical Engineering
Engineering College - University of Basrah

Example 3

Using the data of the compressor of example 1. Calculate the isothermal efficiency of the compressor .

$$
W_{\text {isothermal }}=m \operatorname{RTL}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)=\left(\frac{1.226}{60}\right) \times 0.287 \times 288 \operatorname{Ln}\left(\frac{7}{1.013}\right)=3.2666 \mathrm{~kW}
$$

From example 1, indicated work $=4.23 \mathrm{~kW}$

$$
\eta_{\text {isothermal }}=\frac{\mathbf{W}_{\text {isothermal }}}{\mathbf{W}_{\text {net }(\text { indicated })}}=\frac{3.2666}{4.23}=0.7722=77.22 \%
$$

Reciprocating Compressor Including Clearance

Clearance Volume :

Volume that remains inside the cylinder after the piston reaches the end of its inward stroke.

Thus, Effective Stroke Volume $=V_{1}-V_{4}$ (Induced Volume)

Actual Work $=W_{a c t}=$ Area 1-2-3-4
$W_{a c t}=\operatorname{Arca}(5-1-2-6)-\operatorname{Area}(5-4-3-6)$

In engineering analysis, the performance was achieved under idealized circumstances for the cycle. The net work of the cycle equal the sum work of all processes. i. e.

$$
\mathbf{W}_{\text {net indicated }}=\boldsymbol{\Sigma} \mathbf{W}=\mathbf{W}_{\mathrm{ab}}+\mathbf{W}_{\mathrm{bc}}+\mathbf{W}_{\mathrm{cd}}+\mathbf{W}_{\mathrm{da}}
$$

Process ab is polytropic compression, thus perfect gas (air) compress according to the law :

$$
P V^{n}=\text { Constant }, \quad \text { then } P=\frac{c}{V^{n}}
$$

Then the work found by :
$W_{a b}=a^{f}{ }^{b} P d V$
$W_{a b}=a \int^{b} \frac{C}{V^{n}} d V=C a f \frac{d V}{V^{n}}$
$\mathbf{W}_{\mathrm{ab}}=\mathrm{C}\left[\frac{\mathrm{V}^{1-n}}{1-n}\right] \mathrm{a}^{2}=\mathbf{P V}^{\mathrm{n}}\left[\frac{\mathrm{V}^{1-n}}{1-n}\right]_{\mathrm{a}^{2}}$
$\mathbf{W}_{\mathrm{ab}}=\frac{\mathbf{P}_{2} \mathbf{V}_{\mathrm{b}}-\mathbf{P}_{1} \mathbf{V}_{\mathrm{a}}}{\mathbf{1}-\boldsymbol{n}}=-\frac{\mathbf{P}_{2} \mathbf{V}_{\mathrm{b}}-\mathbf{P}_{1} \mathbf{V}_{\mathrm{a}}}{\boldsymbol{n - 1}}$
By equations $\mathbf{P V}^{\mathbf{n}}=$ Constant, and $\frac{\mathbf{P V}}{\mathbf{T}}=\mathbf{C}$
Can found $\quad \mathbf{T}_{\mathbf{2}}=\mathbf{T}_{\mathbf{1}}\left(\frac{\mathbf{V}_{\mathbf{1}}}{\mathbf{V}_{\mathbf{2}}}\right)^{\mathbf{n - 1}}$

$$
\mathbf{T}_{2}=\mathbf{T}_{1}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(\mathbf{n}-1) / \mathbf{n}}
$$

Process da is isobaric expansion, the perfect gas (air) expand according to the law of work :

$$
W d a=P 1(V a-V d)
$$

$$
\text { Wnet indicated }=\Sigma W=\text { Wab }+ \text { Wbc }+ \text { Wcd }+ \text { Wda }
$$

$$
\text { Wnet }(\text { indicated })=-\frac{P 2 V b-P 1 V a}{n-1}+\mathrm{P} 2(\mathrm{Vc}-\mathrm{Vb})+\frac{\mathrm{P} 2 \mathrm{Vc}-\mathrm{P} 1 \mathrm{Vd}}{n-1}+\mathrm{P} 1(\mathrm{Va}-\mathrm{Vd})
$$

$$
\text { Wnet }(\text { indicated })=-\frac{\mathbf{P 2 V b}-\mathbf{P 1 V a}}{n-1}+\mathrm{P} 2 \mathbf{V c}-\mathbf{P} 2 \mathbf{V b}+\frac{\mathbf{P 2 V c}-\mathbf{P 1 V d}}{n-1}+\mathrm{P} 1 \mathbf{V a}-\text { P1 Vd }
$$

$$
\text { Wnet }(\text { indicated })=-\frac{\mathbf{P} 2 \mathbf{V b}-\mathbf{P} 1 \mathbf{V a}}{n-1}-(\mathrm{P} 2 \mathbf{V b}-\mathbf{P} 1 \mathbf{V a})+\frac{\mathbf{P} 2 \mathbf{V c}-\mathbf{P 1 V d}}{n-1}+(\mathrm{P} 2 \mathbf{V c}-\text { P1 Vd })
$$

$$
\text { Wnet }(\text { indicated })=-(\text { P2 Vb }-\mathbf{P} 1 \text { Va })\left\{\frac{1}{n-1}+1\right\}+(\text { P2 Vc }-\mathbf{P} 1 \text { Vd })\left\{\frac{1}{n-1}+1\right\}
$$

$$
\text { Wnet }(\text { indicated })=-\frac{n}{n-1}(P 2 \text { Vb }-P 1 \text { Va })+\frac{n}{n-1}(P 2 \text { Vc }-P 1 \text { Vd })
$$

$$
\text { Wnet }(\text { indicated })=-\left\{\frac{n}{n-1}(\text { P2 Vb }- \text { P1 Va })-\frac{n}{n-1}(\text { P2 Vc }- \text { P1 Vd })\right\}
$$

For perfect gas (air) PV = mRT, and the work of compressor is done one cycle (-ve), thus the absolute value of the compressor work is :

$$
\text { Wnet }(\text { indicated })=\frac{n}{n-1} \text { maR(T2-T1)- } \frac{n}{n-1} \text { md R(T2-T1) }
$$

Where the mass flow rate at $\quad \mathbf{m}_{\mathbf{a}}=\mathbf{m}_{\mathbf{b}} \quad$ and

$$
\mathbf{m}_{\mathbf{c}}=\mathbf{m}_{\mathbf{d}}
$$

$$
\begin{aligned}
& \mathbf{W}_{\text {net }(\text { indicated })}=\frac{n}{n-1} R\left(T_{2}-T_{1}\right)\left(m_{a}-m_{d}\right) \\
& \mathbf{W}_{\text {net }(\text { indicated })}=\frac{n}{n-1} m_{\text {induced }} R T_{1}\left(\frac{T_{2}}{T_{1}}-1\right)
\end{aligned}
$$

Where the mass induced per unit time to the compressor is

$$
\mathbf{m}_{\text {induced }}=\left(\mathbf{m}_{\mathbf{a}}-\mathbf{m}_{\mathbf{d}}\right)
$$

$$
\begin{gathered}
\left.\mathbf{W}_{\text {net }(\text { indicated })}=\frac{\mathbf{n}}{n-1} \mathbf{P}_{1} V_{\text {induced }}\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(n-1) / n}-1\right) \\
\left.\mathbf{W}_{\text {net }(\text { indicated })}=\frac{\mathbf{n}}{n-1} \mathbf{P}_{1}\left(V_{\mathbf{a}}-V_{d}\right)\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(n-1) / n}-1\right)
\end{gathered}
$$

Where the volume induced per unit to the compressor is $\mathbf{V}_{\text {induced }}=\left(\mathbf{V}_{\mathbf{a}}-\mathbf{V}_{\mathbf{d}}\right)$

Example 4

A single-stage, double-acting air compressor is required to deliver $14 \mathrm{~m}^{3}$ of air per minute measured at 1.013 bar and $15^{\circ} \mathrm{C}$. The delivery pressure is 7 bar and the speed $300 \mathrm{rev} / \mathrm{min}$. Take the clearance volume as 5% of the swept volume with a compression and re-expansion index of $n=1.3$. Calculate the swept volume of the cylinder, the delivery temperature, and the indicated power.
Referring to Fig.

$$
\text { Swept volume }=\left(V_{\mathrm{a}}-V_{\mathrm{s}}\right)=V_{\mathrm{n}}
$$

and Clearance volume, $V_{c}=0.05 V_{\text {, }}$
i.e. $\quad V_{\mathrm{a}}=1.05 \mathrm{~V}_{\text {, }}$

Using equation for a double-acting machine

$$
\text { Volume induced per cycle, } \begin{aligned}
\left(V_{\mathrm{m}}-V_{d}\right) & =\frac{14}{300 \times 2} \\
& =0.0233 \mathrm{~m}^{3} / \mathrm{cycle}
\end{aligned}
$$

(cycles per minute $=$ revolutions per minute \times cycles per revolution). Now

$$
\begin{aligned}
& V_{\mathrm{d}}=V_{\mathrm{c}}\left(\frac{p_{2}}{p_{1}}\right)^{1 / n}=0.05 V_{\mathrm{s}}\left(\frac{7}{1.013}\right)^{1 / 1.3} \\
& \text { i.e. } \quad V_{d}=0.221 V_{\mathrm{s}}
\end{aligned}
$$

therefore

$$
\left(V_{\mathrm{s}}-V_{\mathrm{d}}\right)=1.05 V_{\mathrm{s}}-0.221 V_{\mathrm{s}}=0.0233 \mathrm{~m}^{3} / \mathrm{cycle}
$$

therefore

$$
V_{i}=\frac{0.0233}{0.829}=0.0281 \mathrm{~m}^{3} / \mathrm{cycle}
$$

i.e. \quad Swept volume of compressor $=0.0281 \mathrm{~m}^{3}$

Delivery temp, $T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{(m-11 / m}$
and

$$
T_{1}=15+273=288 \mathrm{~K}
$$

i.e.

$$
\begin{aligned}
T_{2} & =288\left(\frac{7}{1.013}\right)^{(1.3-1) / 1.3} \\
& =450 \mathrm{~K}
\end{aligned}
$$

therefore

Delivery temp. $=177^{\circ} \mathrm{C}$
Using equation
Indicated power

$$
\begin{aligned}
& =\frac{n}{n-1} p_{1} \dot{V}\left\{\left(\frac{p_{2}}{p_{i}}\right)^{0 n-1 N / n}-1\right\} \\
& =\frac{1.3}{0.3} \times \frac{1.013 \times 10^{5} \times 14}{10^{3} \times 60}\left\{\left(\frac{7}{1.013}\right)^{11.3-111.3}-1\right\} \mathrm{kW}
\end{aligned}
$$

i.e. Indicated power $=57.6 \mathrm{~kW}$

Or, can indicated power can be calculated :

$$
\dot{m}=\frac{1.013 \times 14 \times 10^{3}}{0.287 \times 288 \times 10^{3}}=17.16 \mathrm{~kg} / \mathrm{min}
$$

Then, using equation

$$
\begin{aligned}
\text { Indicated power } & =\frac{n}{n-1} \dot{m} R\left(T_{2}-T_{1}\right) \\
& =\frac{1.3 \times 17.16 \times 0.287(450-288)}{0.3 \times 60} \\
& =57.6 \mathrm{~kW} \text { (as before) }
\end{aligned}
$$

Volumetric efficiency, η_{v}

It has been shown that one of the effects of clearance is to reduce the induced volume to a value less than that of the swept volume. This means that for a required induction the cylinder size must be increased over that calculated on the assumption of zero clearance. The volumetric efficiency is defined as follows:
$\eta_{v}=$ the mass of gas delivered, divided by the mass of gas which would fill the swept volume at the free air conditions of pressure and temperature
or
$\eta_{\mathrm{s}}=$ the volume of gas delivered measured at the free air pressure and temperature, divided by the swept volume of the cylinder
The volume of air dealt with per unit time by an air compressor is quoted as

$$
\boldsymbol{\eta}_{\text {volumetric }}=\frac{\mathbf{m}_{\text {delivered }}}{\mathbf{m}_{\text {sweptet }}}
$$

($\boldsymbol{\eta}_{\text {volumetric }}=\frac{\mathbf{V}_{\text {delivered (induced) }}}{\mathbf{V}_{\text {sweptet }}}=\frac{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathrm{d}}}{\mathbf{V}_{\mathrm{a}}-\mathbf{V}_{\mathbf{c}}}$

$$
\text { volumetric }-\frac{V_{\text {sweptet }}}{-\overline{\mathbf{V}_{\mathbf{a}}-\mathbf{V}_{\mathbf{c}}}, ~}
$$ the free air delivery (FAD), and is the rate of volume flow delivered, measured at the pressure and temperature of the atmosphere in which the machine is situated.

Equations above per cycle is V_{d} at p and T, then the mass delivered per cycle is

$$
m_{\mathrm{de}}=\frac{p V_{\mathrm{de}}}{R T}
$$

$$
\mathbf{m}_{\text {deliverd (induced) }}=\frac{\mathbf{P} \mathbf{V}_{\text {deliverd (induced) }}}{\mathbf{R} \mathbf{T}}
$$

The mass required to fill the swept volume, V_{s}, at p and T is given by

$$
m_{\mathrm{s}}=\frac{p V_{s}}{R T}
$$

Where $\mathbf{V s}_{\mathbf{s}}=\mathbf{V a}_{\mathbf{a}}-\mathbf{V}_{\mathbf{c}}$

And $V_{\text {de }}$, at $\quad \mathbf{T}_{\mathbf{a}} \& \mathbf{P}_{\mathbf{a}}$

$$
\mathbf{V}_{\mathrm{de}}=\mathbf{V}_{\mathrm{b}}-\mathbf{V}_{\mathbf{c}}
$$

Therefore by equation

$$
\eta_{v}=\frac{m_{\mathrm{de}}}{m_{\mathrm{v}}} \frac{p V_{\mathrm{de}}}{R T} \times \frac{R T}{p V_{\mathrm{v}}}=\frac{V_{\mathrm{de}}}{V_{\mathrm{v}}}
$$

The volumetric efficiency can be obtained from the indicator diagram. Referring to Fig.

Volume induced $=V_{\mathrm{a}}-V_{\mathrm{d}}=V_{\mathrm{s}}+V_{c}-V_{\mathrm{d}}$

$$
V d=\operatorname{Vc}\left(\frac{P 2}{P 1}\right)^{1 / n}
$$

Volume induced $=\mathbf{V a}-\mathbf{V d}=\mathbf{V S}+\mathbf{V C}-\mathbf{V d}$

Volume induced $=\mathbf{V a}-\mathbf{V d}=\mathbf{V S}+\mathbf{V C}-\mathbf{V C}\left(\frac{\mathbf{P} 2}{\mathbf{P} 1}\right)^{\mathbf{1 / n}}$
Volume induced $=\mathbf{V a}-\mathbf{V d}=\mathbf{V S}-\mathbf{V C}\left\{\left(\frac{\mathbf{P 2}}{\mathbf{P} \mathbf{1}}\right)^{\mathbf{1 / n}}-\mathbf{1}\right\}$
η volumetric $=\frac{\mathrm{VS}-\mathrm{VC}\left\{\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{1 / n}-1\right\}}{\mathrm{VS}}$
η volumetric $=1-\frac{\mathrm{VC}\left\{\left(\frac{\mathrm{P} 2}{\mathbf{P} 1}\right)^{1 / \mathrm{n}}-1\right\}}{\mathrm{VS}}$
ๆvolumetric $=1-\frac{\mathrm{VC}}{\mathrm{VS}}\left\{\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{1 / n}-1\right\}$
As before the F.A.D. per cycle is denoted

by Vdeliverd (induced) at P \& T
mdeliverd $($ induced $)=\frac{P \text { Vdeliverd }(\text { induced })}{R T}=\frac{P 1(\mathrm{Va}-\mathrm{Vd})}{R T 1}$
$\frac{\text { F.A.D. }}{\text { cycle }}$, Vdeliverd $($ induced $)=(V a-V d) \frac{T}{T 1} \frac{P 1}{P}$

